
Deep dive nella supply chain
della nostra infrastruttura

cloud

Who i am

Paolo Mainardi
@paolomainardi

➔ Co-founder and CTO @ Sparkfabrik

➔ paolomainardi.com

linkedin.com/in/paolomainardi

continuousdelivery.social/@paolomainardi

➔ Co-host of Continuous Delivery podcast

➔ We are hiring :)

https://www.sparkfabrik.com/en/
https://paolomainardi.com
http://linkedin.com/in/paolomainardi
https://continuousdelivery.social/@paolomainardi
https://www.youtube.com/@ContinuousDeliverySpark

The session

● What is a Software Supply Chain
● Terraform and OCI containers
● DEMO of Sigstore and Syft

“A supply chain is a network of individuals and companies who
are involved in creating a product and delivering it to the

consumer”

https://blog.convisoappsec.com/en/is-your-software-supply-chain-secure/

https://blog.convisoappsec.com/en/is-your-software-supply-chain-secure/

https://slsa.dev/spec/v0.1/#supply-chain-threats

https://slsa.dev/spec/v0.1/#supply-chain-threats

https://slsa.dev/spec/v0.1/#supply-chain-threats

https://slsa.dev/spec/v0.1/#supply-chain-threats

About 18,000 customers of SolarWinds installed the malware, including
tech giants like Microsoft (Cisco, Intel) and top government US agencies like
Pentagon, Homeland security, National Nuclear Security etc.

SolarWinds - Build server compromised

The Sunspot malware infected the
SolarWinds build systems
(NDR: Former SolarWinds CEO blames intern for
‘solarwinds123’ file server password leak)

It works by monitoring the running
processes (msbuild.exe) and replaces one of
the source files before the compiler has
read it, to include the SUNBURST backdoor
code.

https://edition.cnn.com/2021/02/26/politics/solarwinds123-password-intern/index.html
https://edition.cnn.com/2021/02/26/politics/solarwinds123-password-intern/index.html

SolarWinds - What we learned

Conventional security advice that don’t apply here:

● Only install signed versions ❌
● Update your software to the latest version ❌
● Review source code ❌
● Closed source is more secure by design ❌

Log4j - Log4shell 2021 - CVE-2021-44228

https://www.lunasec.io/docs/blog/log4j-zero-day/

https://www.lunasec.io/docs/blog/log4j-zero-day/
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Log4j - Log4shell 2021 - CVE-2021-44228

A timeline of the events:

● 24th November: Issue discovered by Chen Zhaojun of the Alibaba Cloud Security
Team, and reported to the Apache Software Foundation.

● 9th December: Apache released details on a critical vulnerability in Log4j - the RCE
can be fired just by passing a certain string - POC repositories posted on Github.

● Hours later hundreds of companies and governments confirmed to be affected
to Log4Shell attacks

● Patches introduced other critical vulnerabilities: CVE-2021–45046 -
CVE-2021–45105 - CVE-2021–4104

● All applications using directly or indirectly log4j are affected as a result of a
supply chain dependency

IAC
Infrastructure as Code

● Declarative describe your infrastructure as code
● K8S, VMs, networks, storage, users, permissions…
● Examples:

○ Terraform (HCL)
○ Pulumi (Typescript, Python, GO, C#, Java, YAML 🥹)
○ Crossplane (YAML 🥹)

Infrastructure as code

IAC: Extensible with dependencies

● Terraform registry
○ Providers
○ Modules

● Crossplane Contrib
○ Providers

● Pulumi registry
○ Packages

TERRAFORM DEEP-DIVE

Terraform: Providers and modules

● Providers are API implementation and Modules are
groups of resources.

● Terraform providers and modules used in your Terraform
configuration have full access to the variables and
Terraform state within a workspace

Terraform: Anatomy of a Module

1. Modules don’t have any form of signature or checksum
(tampering risk)

2. Anyone can publish a module on public Terraform Registry
from a Github repository (typosquatting risk)

3. Modules versions are based on git tags (tampering risk)

Terraform: Module malicious code

What can do a module,
other than create cloud resources ?

Terraform: Module malicious code

1. Can run any form of custom code (local-exec, external)

2. Can interact with the network using the http provider

Terraform: Module malicious code #3

Business request on Thursday, Deadline is Friday:

“Hey team, we have an urgency! We need to deploy a new static
website on GCP and give access to an external team to let them
update it when needed, can you help us ? Please 🥺”

Attack #3 - Find a module on terraform registry

Terraform: Module malicious code #3

��

Attack #3 - Quickly review the code

Terraform: Module malicious code #3

��

Attack #3 - Saturday morning call: we have been hacked, how ??

Terraform: Module malicious code #3

Terraform: How to detect a service account leak ?

Terraform: Detect service account leak with Checkov

Terraform: Detect service account leak with Checkov

Terraform: Detect service account leak with Checkov

LESSON LEARNED

Terraform: Module security lesson learned

● Do not blindly trust communities modules
● Always use a static security scan tool like Checkhov or

TFscan or Trivy - not enough alone, write your own
policies.

https://www.checkov.io/
https://github.com/wils0ns/tfscan
https://github.com/aquasecurity/trivy

DOCKER OCI IMAGES
DEEP-DIVE

OCI stands for Open Container Initiative.

 OCI defines the specifications and standards for container
technologies, such as Image and Distribution spec.

OCI Registries can be also used to store other kind of artifacts (like
Helm charts) and metadata.

https://opencontainers.org/

What is the trusting model behind a Container Image,
or in general, a digital artifact ?

How can i be sure that what i’m running is coming
from a trusted source ?

Secure software supply chain checklist

● Who built it, when and how (Signatures and Provenance)

● The list of things who made the artifact (SBOM)

Digital signatures 101

Integrity
Ensure the data signed was

not altered.

Authenticity
Attest that the data was sent

by the signer.

Non-repudiation
Ensure that the signer cannot

deny signing the content.

Digital signatures 101

Managing keys is hard

Distribution, Storage, Compromise

Digital signatures - Sigstore

SIgstore is an OSS project under the umbrella of OpenSSF foundation.

● Fast growing community and mainstream adopted

○ Used in Kubernetes and many other big vendors (Github, Rubygems,

Arch Linux etc..)

● Signatures are stored alongside images in OCI registry

● Signs are stored in a public tamper-resistant public log

● Keyless signing

https://openssf.org/

SBOM - Software Bill of Material
● A list of “ingredients” for a software

artifact

● Can be used to

○ Vulnerability scanning

○ Software transparency

○ License policy

○ etc..

● Formats: SPDX, CycloneDX

● Tools: Syft, Trivy, Docker

SBOM - For containers

Creating an SBOM for a Container is a complex problem, dependencies

live at different levels:

● Operating system (Debian, Alpine etc…)

● Operating system dependencies (RPM, DEB, APK, PKG…)

● Application dependencies (NPM, Rubygems, Pypi, Composer etc…)

● Static binaries and their dependencies (Go, Rust etc…)

DEMO

Recap

● Software Supply Chain security must be taken very seriously

● IaC suffers of the same issues of the software projects

● Always use static analysis tools for IaC

○ Checkov

○ Trivy

○ TFSec

● Sign your artifacts, Sigstore is nice and easy!

● Generate SBOM and scan for vulnerabilities

○ Snyk

○ Grype

○ Trivy

Recap

https://slsa.dev

It’s a security framework, a check-list of standards and
controls to prevent tampering, improve integrity, and
secure packages and infrastructure in your projects,
businesses or enterprises. It’s how you get from safe
enough to being as resilient as possible, at any link in
the chain.

https://openssf.org

The OpenSSF is a cross-industry organization that
brings together the industry’s most important open
source security initiatives and the individuals
and companies that support them. The OpenSSF is
committed to collaboration and working both
upstream and with existing communities to advance
open source security for all

https://slsa.dev
https://openssf.org

THANKS

